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Abstract. Non-linear ultrasound absorption in solids is mainly attributed to  the 
depirming of dislocations from pinning point.. Confirming the validity of this hy- 
pothesis we introduce here a further diffewnt non-linear mechanism associated with 
the releare of dislocation pile-ups in polycrystalline materials. Pile-up dislocation dy- 
llamio under the action of ultrasonic stress w a w  hss been computed by numerically 
solving the equation. of motion of a population of interacting dislocations initially 
confined in a crystal grain with lowangle boundaries. Dissipated power and mi- 
croscopic dynamic stress-strain cydes have then been computed together with the 
dependeme of local critical resolyJ shear stress on excitation frequency and ampli- 
tude. The dissipated power plots against frequency charsctksticr show both regular 
collective dislocation effects and irregular single dislocation effect. such as peaks. 
This last result could make possible quantitative nondestructive inspection of mi- 
ffoStNCtUd propertis by means of a new interpretation of ultrasound attenuation 
measw-nts whenever pile-up dislocations are thowht to be present. 

1. Introduction 

In the field of low-temperature small plastic deformations of crystals and polycrystals 
there are no generally accepted constitutive equations which link together strains, 
stresses and temperature [I]. The only exception is found in the fairly sophisticated 
physics of twedimensional crystals where edge dislocations are thermodynamic vector 
point defects and stress-strain Characteristics can be deduced from true equations of 
state [Z]. 

Thus, in the less academic three-dimensional case, one needs to acquire specific 
microstructural information about specific crystalline materials in which the non-linear 
hereditary properties are revealed in connection with the intrinsic thermodynamic 
irreversibility. 

Furthermore as it is difficult, although not impossible, to understand the micro- 
scopic dynamics of lattice defects by means of direct measurements [3], computer 
simulations have, for many years, been extensively used, in particular when referring 
to the theory of dislocations and when using molecular dynamicslike methods [4-91. 

A stimulating, alhough very peculiar, problem in the field of the dynamic plastic 
response of crystals and polycrystals is constituted by the experimental evidence of 
plastic deformation produced by high-power ultrasonic waves. Controversy already 
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exists about heat generated insolids by high-power ultrasound [lo, 111. More recently, 
experimental evidence from synchrotron white beam x-ray diffraction topography, has 
revealed permanent deformations produced in aluminum single crystals by ultrasound 
[12] and, similarly, in largegrained zinc, by means of infrared imaging 1121. Despite 
these last results and many existing practical applications of high-power ultrasound for 
mechanical deformation and stress relieving [13], ‘no satisfactory theoretical treatment 
ezplaining ihe interaciion of high-power ulimsound with metals has appeared’ [12]. 

As one among the several physical models needed to explain these and related 
phenomena we have studied the non-linear dynamic response of a discrete dislocation 
pile-up, confined on a certain glide plane in a grain of a threedimensional crystal, to 
ultrasonic stress waves. In this way the possible release motion [14] of ‘long’ straight 
dislocation segments in a population of strongly interacting entities of the same species 
has been considered putting to one side the depinning instability of ‘short’ isolated 
segments interacting with the external field only which had been treated already (see 
e.g. [15, 161). 

To illustrate the matter we refer to a crystal grain whose small angle boundaries 
consist of walls of plane parallel edge dislocations whose number density is less than 
one per lattice spacing [17]: in between the two parallel borders we imagine a system 
of N straight infinite positive edge dislocations, each parallel to the borders, able to 
move on a unique crystallographic gIide plane. We m u m e  that  no wall dislocations 
lie on this plane. 

Under these assumptions the only significant independent variables are the posi- 
tions of the dislocations on the glide plane, and the problem becomes one-dimensional. 
We disregard interactions with dislocations lying on other glide planes: the results we 
obtained were still comparable with those inferred from experimental evidence, pro- 
vided the host crystal is not too work-hardened [18]. 

Moreover we suppose that we are far from the melting temperature and that 
thermal fluctuations are negligible [19, 201. The main causes of dislocations slowing 
down in a perfect crystal are the dissipative interactions with both the phonon and 
electron subsystems. These mechanisms originate viscous forces proportional to the 
dislocation velocities [21]. 

As a final assumption we neglect the effective mass of the dislocations: in fact 
inertial effects are small if compared with viscous ones when glide rigid motion, and 
not vibrational motion, of pinned dislocation segments is considered [22]. 

Using a computer we solved the equations of discrete dislocation dynamics and 
obtained detailed information about the positions, velocities, linear density of dis- 
locations in the crystal, and therefore dissipated power, strains and strain rates as 
functions of such parameters as the number of dislocations, crystal dimensions, fre- 
quency and the amplitude of the external stress wave. 

The behaviour of a crystal grain undergoing a sinusoidal stress wave has been 
examined, by making an analysis in terms of frequency and amplitude. In this way 
it has been possible to simulate novel amplitude dependent (non-linear) ultrasonic 
absorption in matter by dislocations not related to the mechanism of depinning [16]. 

C E Botiani ei al 

2. Dynamics of dislocations 

As is well known, the internal forces (per unit lenghh) acting between two parallel infi- 
nite edge dislocations are tensorial: they depend both on distance between dislocation 
lines and angle between Burgers vectors even in an elastically isotropic medium. 
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Let the glide planes be parallel to the (2%) plane and the z-axis be parallel to the 
dislocation lines. If a dislocation line coincides with the z-axis and another one passes 
through the point (.,e) on the plane (zy), then the I component of the configumlional 
internal force (per unit length) acting on the dislocation at (.,e) is [I71 

pb,b, cos 8 cos 28 F ,  = 
2?r(l- v) r 

In the case of two dislocations laying on the same glide plane, the first at x1 and 
the second at z2,  (8 = 0), we have * 1 

2*(1- v) (II - 12) 
F ,  = 

We now consider two walls at z = -d and z = +d, perpendicular to the glide 
plane, with length 2L: the force bS0(2) exerted by the walls on a dislocation at-+ is 
1171: 

1 bSO(z)  = N, (3) 

N8 representing the number of dislocations in each wall, with NJ2L < 1 and b, the 
Burgers vector of sessile wall dislocations and b the Burgers vector of glide dislocations. 
Figure 1. shows the shear field uyz(z, 0) = S,,(z) produced by the walls on the glide 
plane y = 0 (in non-dimensional units) and figure 2 the corresponding potential well 
Uo(z) = - Jzd &(I) dz. Because of the logarithmic divergence of the dislocation- 
dislocation potential energy (see equation (1)) it is not possible here to assume a null 
potential energy at infinity. 

I 
- to00 -3000 -10011 -1000 0 1000 zoo0 3000 .io00 

d,aiac.llon pn.,tien 

Figure 1. The force exerted an a positive glide dirlMation by two parallel grain 
boundary walls (see equation (3)). 

The dynamics of pile-up dislocations is described by a system of ordinary differ- 
ential equations (see e.g. [22]) of a dissipative nature: 



Figure.2. Theelsstieptmtidenergy wellcorrrspondingto theforcefieldof e e l .  

where T ~ =  is an additionalexternal stress fieldsuperimposed on S,(z), N is the number 
of pile-up dislocations on the considered glide plane and E is the dislocation drag 
coefficient connected mainly to dislocation-phonon and dislocation-electron scattering 
[16, 211. 

Equation (4) is just a quasi-static force balance: no inertial effects have been 
included as discussed in the introduction. Should one wish to consider such inertial 
effects it would not be sufficient just to add to (4) a term proportional to dislocation 
acceleration: for a thorough discussion of such corrective terms in (4) see [22]. In 
the initial part of our work we took pure acceleration terms [22] into account and 
obtained, in all cases illustrated here, results not significantly different from those 
obtained without them: thus we shall not mention inertial effects anymore. 

We now introduce non-dimensional time, length and shear scales but, for the sake 
of simplicity, we shall retain the old symbols of equation (4): 

+ ~ ( z , t )  ( i , j  = 1 , N ) .  dZi - 1 - - S 0 ( Z i )  - - dt j ~ i  zj - 2; (5) 

We can recover physical quantities by multiplying z by b, t by B2x( 1 - u) /p ,  and T 
by p/2a(l- U). 

For equation (4) to be valid all dislocation velocities must be less than the shear 
sound velocity in the medium 1221. In particular in the initial positions the dislocation 
velocities (maximum velocities in a relaxation without external stress) must satisfy this 
requirement. In all the simulations described later the initial velocities were exactly 
zero corresponding to the initial equilibrium positions previously found solving (4) 
with a reasonable distribution of initial positions and putting the external stress 7 

equal to zero: the unforced asymptotic solutions of (4) were taken as good equilibrium 
initial positions for subsequent forced tests (see next section). 

3. Response to monochromatic stress waves 

Let us now examine the behaviour of dislocations while being subjected to ultrasonic 
stress waves. This was simulated by putting the expression: 

s(z,t)  = ~ ~ s i n ( L z - w t )  (6) 
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Figure 3. Dynamic criticalresolved shea stress 
(in units of maximum grain boundary stress. see 
text) against st- wave frequency. 

Figure 4. Dislocation positions as functions 
of non-dimensional time under the action of a 
monochromatic st- wave for a subcritical am- 
plitude rmaX/Z: all dislocatiana remain confined 
in the grain. 

in equation (5) for the external shear stress resolved on the glide plane. For all die  
locations inside the grain to experience the same field simultaneously, the wavelength 
of the exciting wave must be much greater than the distance between the walls, as 
expressed by the inequality: X = 27r/k > 2d. 

For instance, setting d = 2000 and taking for the sound velocity in the crystal 
U, = m Y 3000 ms-l, we get U = w / 2 r  d: 1.9 GHz. 

We see that, within the ultrasonic frequency spectrum, we can safely neglect the 
spatial dependence in (6), and use the simplified form: 

r(t) = ro sin(&). (7) 

3.1. Dynamic critical resolved shear stress 

First of all we determined the dynamic critical shear T,, = r,, that is the maximum 
value of the amplitude of the external stress wave below which all forced dislocai 
tions remain confined inside the grain and only oscillate about equilibrium positions 
(linear anelastic response) and above which deconfinement motion starts (non-linear 
viscoplastic response). Anelastic response is reversible in terms of the purely mechan- 
ical motion of dislocations but not in thermodynamical terms, leading to ultrasound 
absorption and crystal heating, while viscoplastic response is irreversible from all 
points of view. 

In figure 3 the behaviour of critical shear r, (in units of maximum grain boundary 
shear r,,,,,, = S,,,,,) is represented as a function of ultrasound frequency for N = 
100,d = 2000,L = 150 and N8 = 100. The expression for r,,,,, is obtained from 
equation (3) and is 

(8) Pbs 2d Pb8 

rmax = N12r(  1 - U )  [ (2d)2  + Lz ] % N s 4 r ( l  - u)d  

corresponding to z = f d .  
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We see that increasing the frequency increases critical shear, that is dislocations 
find i t  less easy to leave the grain: dislocation-dislocation internal repulsion is leas 
effective in helping the external stress. In the frequency range we have explored the 
slope of the characteristic T= against frequency is ever increasing: the asymptotic high 
frequency behaviour of T~ would be reached at frequencies violating the conditions 
outlined in section 3. The zero frequency limit of rC is a finite constant as can be 
guessed from the decreasing slope of the curve towards lower frequencies. 

This critical stress behaviour is analogous to that seen in a more traditional low 
frequency mechanical test: although it is impossible to get a unified theory of plas- 
tic mechanical response of materials, this seems to be a characteristic feature of all 
deformation processes controlled by dislocation release and motion. 

In figures 4 and 5 we report the positions of dislocations as functions of time during 
three periods of forced motion. The ca8e relates to 100 dislocations with an excitation 
frequency of 50 MHz. In figure 4 the amplitude of the ultrasonic wave corresponds 
to T~ = ~,,/2: all dislocations remain confined inside the grain. In figure 5 the 
amplitude is T~ = T ~ ~ ~ :  groups of dislocations get through the grain boundary pushed 
by both external shear and internal repulsion. Once the first group has abandoned the 
original grain the dislocation density within it is lowered, the repulsion also becomes 
lower and the dynamic critical shear increases: this can be seen from the less numerous 
dislocation groups subsequently freed. This clearly shows the strongly irreversible 
nature of dislocation motion even in the absence of dislocation sources and dislocation 
annihilation. 

Figure 5. Dislocation positions a functions 
of adimensionsl time under the action of a 
monochromatic stress wave for an amplitude 
equal to T,,,.~: the deconhement motion of 
p u p  of dislocations is evidmt. 

Figure 6. Dissipated power against frequmcy 
for five different stress wavc amplitudsl (from 
bottom to top: r g  = 0.01,0.4.0.5.0.6.1 ,ma,). 
With this repmentation the lowest curve shows 
the typical gross behaviour of d l  curves while the 
details of the other curyes are not visible. In 
the low frequency mgim fine irregular behaviour 
was found at higher amplitudes (see figure 7). 
In fipmea 6, 7 and 8 power is measured in units 
p2b2/4n2(1 - v ) l B ,  see text. 
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3.2. Dissipated power 

The energy dissipated per unit time and length during the motion of a dislocation 
line, that  is the dissipated power per unit line, is given by 

W = Bu' (9) 

where B is the dislocation drag coefficient already introduced (see [21] and equa- 
tion (4)) and U is the velocity of the dislocation segment under consideration. For 
infinite straight dislocations U is constant along the dislocation line but varies with 
time as the dislocation is accelerated as a whole. 

The power dissipated during the movement of dislocations concides with that part 
of the ultrasound power which is irreversibly absorbed by the medium; using the same 
non-dimensional units as in equation ( 5 )  it can be written as 

i=1 

where N is the number of dislocations and ui the speed of the ith dislocation. In this 
way we measure the dissipated power in unit,s pab2/4~'(1 - u)'B. 

The mean power dissipated in each period of the forcing stress wave (after the 
initial transient) can be obtained directly from our numerical data as 

where N = number of dislocations, Nt = number of sampling instants in each period, 
uij = velocity of the i th  dislocation at  the j t h  instant. 

To satisfy the sampling theorem a choice of 20 points per period for the forcing 
sinusoid turned out to be a reasonable one in the relevant frequency spectrum. 

In figure 6 the logarithm of mean dissipated power is plotted against the logarithm 
of the frequency at different shear amplitudes. 

Several considerations are in order. 
Dissipated power increases with excitation frequency but there is a tendency (this 

is clearly visible only in the lowest curve due to scale problems) to reach a frequency 
independent regime a t  higher frequencies; the presence of a double R e x  is common 
to all curves and there is an increase in the frequencies at  which the inflexion points 
occur, increasing the stress wave amplitude. In general we found the foreseeable result 
that, at  k e d  frequency and dislocation number, the dissipated power increases as the 
square of the amplitude of the exciting stress wave. 

The main feature exhibited by these curves is the fact that  three different frequency 
regions seem to exist: 

(i) a regular region with downward curvature above the second flex frequency; 
(ii) a regular region with upward curvature between the two flex frequencies; and 
(iii) an irregular region (with peaks) in the low frequency regime. 

This last region is not visible in figure 6 but is clearly shown in an enlarged 
portion of the maximum amplitude curve (7, = T,,,,) reproduced in figure 7. Below 
some characteristic critical amplitude the irregular region is washed out in any case. 
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Los of !be fnquenq 

Figure 7. Sawtooth shape of dissipated p o w 0  
amund the critical frequency at which the fusl 
dislocation overcomes the pain boundwy barria 
(enhged portion of the upper curve in fi- 6 )  

B 
/ 

L J  

,I) D.1 ,011 

Los of the F~~QYIXY 

Figure 8. Dissipated power against frequency 
for three different dislocation numbers at eon- 
stant stress wave amplitude. 

The first peak (when present) encountered when decreasing the frequency corre- 
sponds to the frequency at  which the first dislocation escapes from the grain. Figure 7 
shows the sawtooth local structure of the dissipation curve corresponding to this phe- 
nomenon: starting at  higher frequencies and decreasing the frequency we see a very 
sharp increase in the dissipation as the first dislocation overcomes the grain boundary 
barrier at a very definite frequency. At lower frequencies, however, the first curve 
becomes irregular because at each point it corresponds an ever increasing number of 
dislocations leaving the grain and the confined pile-up system is changing continuously. 

Similar results are obtained with fewer dislocations at higher amplitudes and lower 
frequencies (see figure 8). In the case of 50 dislocations, for instance, corresponding 
to an amplitude ro = rmax/2, no dislocation can leave the grain even at the smallest 
frequency we considered. 

4. Stress-strain characteristics 

The starting point for the determination of global stress-strain characteristics in the 
microplastic regime is always the Orowan equation [17] 

i( t)  = bpi (10) 

where i is the plastic shear strain rate, p is the average density of mobile dislocations 
and .I, their average velocity. 

To compute (IO) we used the time-dependent joint distribution N ( z , u , t )  of d i e  
location positions and velocities: N ( q ,  w j ,  t )  being the number of dislocations with 
positions between xi and xi + Ax and velocities between w j  and uj + Au, at time t. 
The mean dislocation velocity (discrete) Eulerian field is then 
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Figure 9. Stress-train cyclcs 
for 70 = vmar and N = 100 at 
three difTemnt frequencies. The 
corresponding periods are: (a) 
1000 time unit+ [ b )  15000 time 
units; and (c)  30000 time units. 

and the mean density of mobile dislocations is 

E:=., N ( Z i , U j > t )  
A X  Phi, t )  = 

Mean (global) plastic strain rate is similarly built up as 

I N. ~ j ” l N ( z i , u j , t ) u j  
i(t) = b- c Az (11) 

N= i=1 

N ( z ,  U, t )  was computed by the IMSL routine BDCOUZ, which constructs bidimen- 
sional istograms. 

For obtaining stress-strain graphs we integrated (11) numerically to get E and 
plotted 7 against E ,  

We have studied several cases corresponding to dislocation numbers of N = 
100,50,25 and stress wave amplitudes ranging from r,,,,/lOO to rmu. The ultra- 
sound frequencies were chosen in order to cover the spectrum examined so far, with 
particular attention being paid to the frequencies where the first dislocation leaves the 
grain at fixed N and T ~ .  

In this way we studied frequencies ranging from 30 MHz to 1 GHz, corresponding 
to periods of the sinusoid ranging from 30000 to 1000 units of our non-dimensional 
time. 
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Let us start with the case N = 100 and ro = T,,,~~ in figure 9. It appears that the 
area of the first cycle grows on decreasing the frequency, that is with an increase in the 
period of the exciting sinusoid, while in successive cycles this effect is no longer visible; 
this is due to the fact that for T = 30000 many dislocations leave the grain during 
the first cycle (see figure 5), so that the confined system sees its population lowered 
in the following periods. The lower number of dislocations inside the grain makes the 
deformation be smaller, for the same stress. At the same time the maximum (plastic) 
deformation relative to the first semiperiod of the excitation increases. 

In all these cases the cycles are asymmetrical, that is the positive maximum d e  
formation at zero shear is much greater than the negative one; this is reminescent of 
the Bauschinger effect and is strictly related to this type of irreversible motions. 

At high frequencies no dislocation can leave the grain; the strain cycle tends to end, 
recovering a certain symmetry. This means that deformation does not increase with 
time, and negative deformations become comparable with positive ones (transition 
from viscoplastic to anelastic regimes). 

At  low frequencies we still have a decrease in the positive maximum deformation 
after the first cycle but the strain cycle does not tend to end. 

0.32 0.32 

7.10- 7 

0.00 0.00 

-0.32 -0.32 
-0.5 0.0 0.5 -20.0 0.0 20.0 

E 

Figure 10. Stress-strain cy- 
des for M excitation period of 
15000 time units, N = 100 at 
three different amplitudes: ( n )  
70 = ~max1100; ( b )  70 = nnaxJ2; 
and (c) 70 = T ~ ~ x .  

- ~ .~. .~~ . ~~ 

Let us analyse now the case with excitation period T = 15000, changing the 
amplitude ro, but always with 100 dislocations (figure 10). 
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For ro = r,,/lOO: 

(i) the cycles quickly tend to a symmetric shape after a first asymmetric cycle; 

(ii) but the asymptotic value of maximum positive plastic strain is less the the 

(iii) cycles remain asymmetric although they slowly become narrower. 

similar behaviour is found for r,, = r,,,,/2; 

negative one; for r,, ,= rmaX; and 

5 .  Conclusions 

The response of a dislocation pile-up confined in a crystalline grain with low-angle 
boundaries to ultrasonic monochromatic stress waves was found to be highly non- 
linear, showing a transition from regular stable behaviour to irregular unstable be- 
haviour at critical amplitudes, dislocation numbers and excitation frequencies. 

Coupled non-linear differential equations of dislocation dynamics have been solved, 
by computer, to obtain detailed information on amplitude dependent ultrasound at- 
tenuation, dynamic critical resolved shear stress of confined pile-ups and microscopic 
stress-strain cycles. 

In contrast to previous work on discrete dislocation dynamics, here a realistic 
barrier stress field has been added to the dislocation mutual repulsion and viscous 
drag due to interactions with the host medium. In this way the feasibility of even 
more realistic computations, directly comparable with experimental findings, has been 
proved. 

To this goal interaction among different glide systems and different dislocation 
types could be considered, at  least statistically. 

On the basis of our preliminary results ultrasound attenuation could be reconsid- 
ered as a powerful quantitative method to investigate specific microstructural prop- 
erties of solids containing confined dislocation systems and their structural stability. 
Information in this area is known to be relevant to several basic and applied fields 
such as, for example, microcrack formation. 
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